#	Primary Root-Cause	Controls
		a. Improve Cost effectiveness, efficiency
		b. Excavation Design for potential installation of burst prone support
		c. Understand lifecycle of excavation
		d. Be proactive in your mining planning to accommodate future burst prone GS design
		e. Anticipation process for installation of burst prone support
		f. Improve installation equipment availability
		g. Predetermine areas for burst prone support (pre-hab)
		h. Operations acceptance of ground control recommendations for burst prone support
1	Lack of burst-prone ground support	i. Incorporate burst prone support into the cycle (consider it single pass installation – not primary/secondary)
		j. Prioritize secondary support. Link to mining plan schedule
		k. Improve the ability to measure the residual capacity of the support
		I. Equal importance to production bonus system for pre-hab and rehab
		m. Quality control of surface support (need for continuous improvement)
		n. Continuous improvement of the design of the composite burst prone support system
		o. Better clarity on the specs of the various dynamic supports
		p. Better understanding of the interaction between individual components of burst prone system (e.g. not always numerically driven)
	Lack of understanding of geology and stress conditions	a. Optimize use of diamond drill information (analysis of borehole breakouts using Accoustic televiewer)
2		b. Increased use of cutting-edge technology, but due diligence required before use. Currently using mechanical engineering software (finite element software).
		c. Need people at the mine site with the ability to use the technology
		a. Define seismic risk management plan in corporate health and safety policy
2	Lack of management commitment to	b. Formal audits and reviews to ensure operational execution is aligned with corporate expectations
5	safety	c. JHSC vigilance and participation
		d. Effective IRS
		a. Educate and involve all workplace parties in the power of risk assessment and management
		b. Report near-miss data to incorporate into risk assessment analysis
		c. Business analytics to feed into risk assessments
		d. Better data and analysis to reduce subjectivity
4	Ineffective risk management process	e. Train people on risk assessment facilitation
		f. Provide risk assessment guidelines

#	Primary Root-Cause	Controls
		g. Better capability of HSAs to provide support on risk assessments
		h. Tangible results on operations based on risk assessment (closing the loop on the risk management cycle)
		i. Formalized risk assessment program to comply with sections 5.1, 5.2, 5.3 of the mining reg.

#	Primary Root-Cause	Controls
	Improper mine plan	a. Pre-mine geomechanical/stability analysis
		b. Deliberate effort to get strategic geotechnical information as early as possible
5		c. Flexibility in mine plan to accommodate changes in ore reserves
		d. Capable planning personnel
		e. Mindful of engineering fundamentals while meeting economic targets
		a. Educate on and keep workplace parties aware of seismic hazards
		b. Ensure conversation at the face (muck-pile discussion)
6	Lack of understanding of seismic	c. Foster awareness of the triggers/causes of seismic hazards
0	hazards	d. Communicate any seismic concerns at crew lineup meetings and continue the discussion underground at the face
		e. Basic level of training for supervisor on the seismic viewer
		f. Formal ground control training and review
		a. Clear definition of IRS
		b. Management commitment to IRS
7	Dysfunctional IBS	c. Every supervisor having the same understanding of IRS
/	Dystunctional IKS	d. Implement improvement strategies based on IRS survey results
		e. Continuous improvement of the system
		f. KPIs on closure of workers' concerns
		a. Proper blasting controls
		b. Scaling before installing ground support
		c. On-going scaling
		d. Proper training for application (bolting off a muckpile vs platform: ground support type)
		e. Consideration given to modified leading edge support (e.g. stiffer bolts or zero gauge screen straps)
o	Installation of ground support by	f. Ensuring capability & capacity of the tools (e.g. sufficient air pressure for handheld tools, rebar pushers, drill bits)
0	workers using handheld support	g. Ensure proper housekeeping for retreat purposes
		h. Adequate re-entry protocol & monitoring (for large blasts or seismic events)
		i. Proper ground support selection & installation procedure (taking into consideration burst prone walls and face)
		j. Proper ground support design (engineered)
		k. Clear communication of ground support requirements for site specific conditions
		I. Proper workplace inspections
		a. Having processes to collect geotechnical information (geophysics: Acoustical Televiewer (ATV), Optical Televiewer (OTV), diamond
		drilling, mapping)
	I	b. Detter classification of structures/faults with regards to seisific fisk

#	Primary Root-Cause	Controls
		c. Better use of pilot/reconnaissance holes
		d. Having a robust design to capture uncertainties
9	Lack of understanding of structural	e. Understanding local geology (utilizing diamond drill and previous cut mapping information)
-	geology	f. Understanding of lithology, ore type and structure
		g. Understanding of location and condition (ore contact, abutment, sill pillar, proximity to faults/structures)
		h. Making good use of the data analysis
		i. Better resources (structural geologists), skillsets to analyze the geotechnical information
		j. Retraining program
		a. Better collaboration with universities, colleges and industry towards providing programs that have better emphasis on geology and ground control
		b. Setting up an environment for better collaboration between geology and mining programs
		c. More organized, structured and formalized training program for new recruits
		d. Refresher training
10	Lack of specialized resources	e. Define the desired requirements of a ground control engineer/specialist
	(industry/consultants/regulators)	f. Elevate the profile of a ground control engineer/specialist
		g. Incentivize (E.g. Payscale)
		h. Create opportunities for others who are interested to get into ground control
		i. Regulation considerations for a ground control specialist (having a ground control specialist for every mine site)
		j. Consult with HSA for the optimum qualification for a ground control specialist
		a. Micro-seismic monitoring needs based on risk assessment (Reg. 854: 5.1, 5.2, 5.3)
		b. Define best practices for micro-seismic monitoring (E.g. through workshops)
		c. Define best practices for data analysis
11	Deficiency/lack of microseismic	d. Proper maintenance & upgrading/coverage of the seismic/sensor array
	equipment	e. Elevating the importance of maintaining the micro-seismic system in the mines
		f. Dedicated resources for maintenance of sensors
		g. Ensure training on operating the system
		h. Elevate importance of the ground control program
		a. Define and disseminate best practices for re-entry protocols
		b. Assessing the technical risk/criteria for setting application priorities for re-entry protocols
		c. Perform continuous review of the re-entry protocol (back-analysis of applications of re-entry protocols)
12	Lack of isolation process	d. Develop better business case for remote equipment based on risk
		e. Improve benchmarking of response to similar risks with other jurisdictions

#	Primary Root-Cause	Controls
		f. Collaborate with suppliers towards optimizing existing remote equipment (i.e. remote bolters and loaders).
		g. Take advantage of the latest 3D scanning
		a. Having processes to collect geotechnical information (geophysics: Acoustical Televiewer (ATV), Optical Televiewer (OTV), diamond drilling, mapping)
		b. Better classification of structures/faults with regards to seismic risk
		c. Better use of pilot/reconnaissance holes
		d. Having a robust design to capture uncertainties
		e. Understanding local geology (utilizing diamond drill and previous cut mapping information)
		f. Understanding of lithology, ore type and structure
		g. Understanding of location and condition (ore contact, abutment, sill pillar, proximity to faults/structures)
13	Inadequate geotechnical data	h. Making good use of the data analysis
15	information	i. Better resources (structural geologists), skillsets to analyze the geotechnical information
		j. Retraining program
		k. Define best practices for collecting geotechnical data
		I. Review and update what is relevant
		m. Better coordination of operation priorities and engineering/geology data collection needs
		n. Take advantage of the latest 3D scanning
		o. Timely collection and interpretation of the data
		p. Better communication between workplace parties (operations, geology, engineering, planning)
	Ineffective ground control communication system	a. Compliance with Section 65
		b. Regular updates to crews
		c. Discussion on ground control during new employee orientation
14		d. Ensure that supervisor & worker common core training is supplemented with local ground control considerations
		e. Ensure that the site specific training requirements adequately reflect the intention of the common core
		f. Customize communication to fit worker needs (i.e. trades people vs mine operators)
		g. Having processes in place to cover cross-shift communication
		a. Having processes to collect geotechnical information (geophysics: Acoustical Televiewer (ATV), Optical Televiewer (OTV), diamond drilling, mapping)
		b. Better classification of structures/faults with regards to seismic risk
		c. Better use of pilot/reconnaissance holes
		d. Having a robust design to capture uncertainties
		e. Understanding local geology (utilizing diamond drill and previous cut mapping information)

#	Primary Root-Cause	Controls
		f. Understanding of lithology, ore type and structure
		g. Understanding of location and condition (ore contact, abutment, sill pillar, proximity to faults/structures)
	Look of identification of much lowetic	h. Making good use of the data analysis
15	geologic structure	i. Better resources (structural geologists), skillsets to analyze the geotechnical information
		j. Retraining program
		k. Define best practices for collecting geotechnical data
		I. Review and update what is relevant
		m. Better coordination of operation priorities and engineering/geology data collection needs
		n. Take advantage of the latest 3D scanning
		o. Timely collection and interpretation of the data
		p. Better communication between workplace parties (operations, geology, engineering, planning)
		q. Continue monitor rock mass (including seismic and displacement monitoring) as mine extraction progresses and sequencing changes
		a. Clearly define what a "near miss" is
		b. Establish a culture where "near miss" is not swept under the rug
16	Lack of reporting of near-miss events	c. Less finger-pointing and more of a learning issue (blameless)
		d. Train supervisors & workers on the importance of reporting near miss incidents
		e. Better communication between cross-shifts (allow for some overlap time to make sure that happens)
	Loss of capacity of ground support over time	a. Compliance with Section 73 (quality control)
17		b. Regular risk assessment of ground support to assess integrity over time (E.g. expected life, changing ground conditions, residual capacity, re-conditioning needs, blasting, corrosion)
		c. More research in measuring/evaluating residual capacity
		d. Opportunity to evaluate dynamic 3D scanning technology
		a. Compliance with Section 65
		b. Elevate the importance of the ground control program
		c. Clear communication of seismic risk and risk mitigation measures
		d. Regular updates to crews
18	Ineffective on-boarding for employees	e. Discussion on ground control during new employee orientation
		f. Ensure that supervisor & worker common core training is supplemented with local ground control considerations
		g. Ensure that the site specific training requirements adequately reflect the intention of the common core
		h. Customize communication to fit worker needs (i.e. trades people vs mine operators)
		i. Having processes in place to cover cross-shift communication

#	Primary Root-Cause	Controls
	Mechanized equipment for ground support installation not versatile enough to accommodate variety of	a. Encourage development of new equipment for small openings (better collaboration with suppliers)
		b. Encourage innovation in mining methods (e.g. boring methods, tunnel boring methods (tbms))
		c. Encourage innovation in shaft sinking methods (station excavation)
19		d. Refine existing technology for remote installation (E.g. type of bolt)
		e. Ensure compatibility of ground support for automated installation methods
	ground support in burst prone areas	f. Adapt composite ground support systems (E.g. post groutable bolts) to automated installation methods
		g. Engage in benchmarking to identify best practices for automating ground support installation
		a. Better records for rockbursts
20	Improper back analysis of past	b. Adopt risk analysis practices for back analysis (E.g. Root-cause analysis: understand cause and effect)
20	rockbursts	c. Better analysis of data collected under Section 72 for rockbursts
		d. Allocate sufficient time and resources for back analysis
		a. Recognize variation of rock strength properties within lithological units
		b. Identify location of contacts between rock types
	Lack of understanding of material properties and seismic response	c. Classify faults (in terms of gouge content, frictional properties, geometry)
21		d. Make better use of geophysical findings (to define the state of failure)
		e. Understand the rock mass response to mining (rather than just the unit rock strength): Seismic monitoring, time-lapse monitoring, observation borehole
		f. Complete the design loop (E.g. continuous calibration of numerical models)
		a. Micro-seismic monitoring needs based on risk assessment (Reg. 854: 5.1, 5.2, 5.3)
		b. Define best practices for micro-seismic monitoring (E.g. through workshops)
	Insufficient micro-seismic monitoring capability	c. Define best practices for data analysis (E.g. including wave form analysis)
		d. Define best practices for array design
		e. Proper maintenance & upgrading/coverage of the seismic/sensor array
		f. Elevating the importance of maintaining the micro-seismic system in the mines
22		g. Dedicated resources for maintenance of sensors
		h. Dedicated resources for managing the system and daily data processing
		i. Succession plan for the management of the system
		j. Ensure training on operating the system
		k. Elevate importance of the ground control program
		I. Better utilize existing diamond drill holes for the purpose of putting in micro-seismic sensors/geophones
		m. Ongoing expansion of arrays to ensure coverage of mining areas
		a. Exercise deliberate measures to ensure reconciliation between initial projections and actual ground response

#	Primary Root-Cause	Controls
	Lack of closure of design loop	b. React appropriately (revise and adjust) according to findings from your reconciliation
		c. Well documented design package histories and procedures in place
23		d. Ensure proper document retention
		e. Ensure proper capture in mine design package of external work (E.g. with consultants)
		f. To foster continuity through standardization and succession planning
		g. Apply lessons learned to future mining
		a. Micro-seismic monitoring needs based on risk assessment (Reg. 854: 5.1, 5.2, 5.3)
		b. Define best practices for micro-seismic monitoring (E.g. through workshops)
		c. Define best practices for data analysis (E.g. including wave form analysis)
		d. Define best practices for array design
		e. Proper maintenance & upgrading/coverage of the seismic/sensor array
		f. Elevating the importance of maintaining the micro-seismic system in the mines
24	Lack of proper analysis of seismic	g. Dedicated resources for maintenance of sensors
24	monitoring data	h. Dedicated resources for managing the system and daily data analysis
		i. Succession plan for the management of the system and analysis of the data
		j. Ensure training on operating the system
		k. Elevate importance of the ground control program
		I. Better utilize existing diamond drill holes for the purpose of putting in micro-seismic sensors/geophones
		m. Ongoing expansion of arrays to ensure coverage of mining areas
		n. Better mining sector support for seismic data analysis (source parameter & mechanism)
		a. Ensure buy-in at all levels of the organization
		b. Rely on evidence where burst prone support has been successful or unsuccessful
		c. Training and "sell" the importance of the need
25	Lack of buy-in from workers on rules	d. Sharing information/best practices/experiences/case studies between mining operations & sites
25	and procedures	e. Better awareness of the mine plan (or updated plan) showing burst prone areas.
		f. Follow/review geo-mechanical studies of mining plan for a specific area prior to execution
		g. Involve the workers in developing the procedures
		h. Clear communication of the importance of rules & procedures
		a. Compliance with Section 65
		b. Ensure buy-in at all levels of the organization
		c. A process for educating the workforce on what the procedures are

#	Primary Root-Cause	Controls
	Lack of compliance with site procedures for seismic hazards	d. Regular review of seismic hazards and site procedures (to be addressed under Reg. 854: 5.1)
		e. Identify those workplaces that have elevated seismic hazards and have a formal review of the procedures before working in those workplaces
26		f. Debriefing of incidents where procedure were not followed and to identify what the consequences were of not following those procedures
		g. Demonstrate the value of these procedures through tangible examples (E.g. distressing, face bolting)
		h. Provide clear explanations in situations where procedures may have to be modified because they may introduce new hazards (E.g.
		De-stress hole in a footwall shoulder in a narrow vein cut and fill)
		Addit for compliance to the procedules
		J. Amend Section 65 to require that the communication plan be updated annually
		k. Review these procedures during orientation for new employees and regular updates of these procedures
		Integrate these procedures into the training program Population considerations for a ground control specialist (busing a ground control specialist for query mine site)
		A. Regulation considerations for a ground control specialist (naving a ground control specialist for every mine site)
		b. Management to be more proactive commensurate to assessed ground control risk
		c. Relterate that ground instability is deemed to be the highest risk in underground mining
	Ground control role undervalued based on level of risk	d. Education on ground control (and the associated risks) is critical for senior management
		e. Budgetary allocations for ground control requirements should reflect the importance of ground control risks
27		f. Section 6 should have a risk assessment component
27		g. Better awareness and enforcement of Section 6
		 HSA technical advisory committee (IAC) should define best practices for ground control function and resources required (including people, tools, etc.)
		i. Elevate the profile of a ground control engineer/specialist
		j. Recognition that dealing with basic ground control hazards is part of all underground workers responsibility
		k. Create opportunities for others who are interested to get into ground control
		I. Consult with HSA for the optimum qualification for a ground control specialist
		a. Proper documentation of seismic hazards (saved as long as mine is in operation)
		b. Updating Section 72 to say that records should be kept at long as mine is in operation
		c. Succession planning and job shadowing
		d. Exit strategy to allow for transfer of knowledge for departing employees
20		e. Establish site specific standards on documentation and data collection of underground observation
28	Loss of institutional knowledge	f. Clear definition of data organization structure, and the relevance of the data being collected
		g. Improve mentoring to new/junior employees
		h. Meet demand through new technology (e.g. ipad)
		i. To foster continuity through standardization

#	Primary Root-Cause	Controls
		j. Provide guidelines for documentation (Here is how to do it!)
	Loss of accuracy over time/geometry	a. Keeping seismic arrays up-to-date
		b. Encourage suppliers of the systems to work on 3D velocity models
		c. Better funding for R&D of advanced systems/analysis (aligning decision with highest sector risk)
20		d. Daily in-house processing & training to check for accuracy
29	change (with respect to seismic	e. Planning to adapt micro-seismic monitoring systems to accommodate upcoming changes in mining methods
	monitoring)	f. Better utilize existing diamond drill holes for the purpose of putting in micro-seismic sensors/geophones
		g. Ongoing expansion of arrays to ensure coverage of mining areas
		h. Dedicated resources for data processing and system maintenance
		a. Compliance with Section 64 & 65
		b. Provide timely feedback loop on workers' concerns regarding seismicity (E.g. formal crew discussions on site specific hazards)
		c. Check for communication gaps at all interfaces (E.g. worker-supervision, supervision-engineering)
		d. On-going review and updating the communication plan
		e. A process for educating the workforce on what the procedures are
	Workers not adequately solicited on knowledge of seismic hazards	f. Regular review of seismic hazards and site procedures (to be addressed under Reg. 854: 5.1)
		g. Identify those workplaces that have elevated seismic hazards and have a formal review of the procedures before working in those
30		workplaces h. Debriefing of incidents where procedure were not followed and to identify what the consequences were of not following those
		procedures
		i. Demonstrate the value of these procedures through tangible examples (E.g. distressing, face bolting)
		j. Provide clear explanations in situations where procedures may have to be modified because they may introduce new hazards (E.g.
		k Audit for compliance to the procedures
		Amend Section 65 to require that the communication plan be updated annually
		m. Review these procedures during orientation for new employees and regular updates of these procedures
		n. Integrate these procedures into the training program
		a. Move towards better analytics for more objective decision making (reduce subjectivity of decision making)
		b. Education (to include management) and constant feedback to lower variability
31	Variability in risk tolerance	c. Compliance with Reg 854: 5.1, 5.2, 5.3
		d. Reducing the risk by engineering controls (E.g. remote loading of a development round, Alimak vs. Raise Bore)
		e. Segregate economic risk vs health & safety risk (worker and manager of the mine)
		a. Proper documentation of seismic hazards (saved as long as mine is in operation)
		b. Succession planning and job shadowing

#	Primary Root-Cause	Controls
	Changing skill sets with new management	c. Exit strategy to allow for transfer of knowledge for departing employees
		d. Establish site specific standards on documentation and data collection of underground observation
		e. Clear definition of data organization structure, and the relevance of the data being collected
		f. To foster continuity through standardization.
32		g. Provide guidelines for documentation (Here is how to do it!)
		h. Well documented histories and procedures in place
		i. Encourage seamless transition through job/task overlap
		j. JHSC involvement to enable management to execute on their commitment
		k. Role description & expectations for a manager is up-to-date
		I. Managers must have underground ground control common core and joint health & safety certification
		m. Improve visualization and integration of the data sets from different models (2D and 3D)
		a. Encourage suppliers of the systems to work on 3D velocity models
		b. Better funding for R&D of advanced systems/analysis (aligning decision with highest sector risk)
		c. Push for better business case (compelling argument to health & safety) to the industry given the fact that this is the #1 risk
		d. Planning to adapt micro-seismic monitoring systems to accommodate upcoming changes in mining methods

#	Primary Root-Cause	Controls
33	Gaps in micro-seismic monitoring	e. Better utilize existing diamond drill holes for the purpose of putting in micro-seismic sensors/geophones
55	technology development	f. Ongoing expansion of arrays to ensure coverage of mining areas
		g. Dedicated resources for data processing and system maintenance
		h. Better communication and collaboration between different parties (suppliers, seismologists, and operations)
		i. Better use of micro-seismic data towards defining gaps in technology development
		j. MLRC should engage with Mirarco, CEMI, Norcat, etc.
		a. Expedite remote loader technology for development blasting
		b. Better funding for R&D of advanced systems/analysis (aligning decision with highest sector risk)
		c. Push for better business case (compelling argument to health & safety) to the industry given the fact that this is the #1 risk
34	Lack of innovation	d. Encourage development of new equipment for small openings (better collaboration with suppliers)
		e. Encourage innovation in mining methods (e.g. boring methods, tunnel boring methods (tbms))
		f. Encourage innovation in shaft sinking methods (station excavation)
		g. Encourage companies that apply narrow vein techniques to explore innovation
		a. Ensure buy-in at all levels of the organization
		b. Rely on evidence where technology has been successful or unsuccessful
		c. Training and "sell" the importance of the need
		d. Sharing information/best practices/experiences/case studies between mining operations & sites
		e. Involve the workers in developing the procedures for new technology
	Lack of mine operator acceptance of	f. Clear communication of the importance of mitigating the seismic risk
35	technology for mitigating seismic risk	g. Regular review of seismic hazards and site procedures (to be addressed under Reg. 854: 5.1)
		h. Identify those workplaces that have elevated seismic hazards and have a formal review of the procedures before working in those workplaces
		i. Debriefing of incidents where procedure were not followed and to identify what the consequences were of not following those
		procedures
		j. Demonstrate the value of technology through tangible examples (E.g. distressing, face bolting, support for dynamic loading)
		k. Provide clear explanations in situations where technology may have to be modified because they may introduce new hazards (E.g. De-stress hole in a footwall shoulder in a narrow yein cut and fill)
		a. Include ground deformation monitoring in the mine design plan (budget for it)
		b. Validate numerical modelling results through deformation monitoring
		c. Make monitoring equipment more operationally friendly (automation)
	Inadequate ground deformation	d. Use 3D scan technology
36	monitoring	e. Close the design loop

#	Primary Root-Cause	Controls
		f. External third party review of the monitoring system
		g. Use ground deformation monitoring in conjunction with seismic monitoring
		h. Identifying areas proactively as to where ground deformation monitoring is required

#	Primary Root-Cause	Controls
37	Foreign ownership (may be out of province) different to local culture	a. Education for the owners on local culture
		b. Proper documentation of seismic hazards (saved as long as mine is in operation)
		c. Establish site specific standards on documentation and data collection of underground observation
		d. Clear definition of data organization structure, and the relevance of the data being collected
		e. To foster continuity through standardization
		f. Provide guidelines for documentation (Here is how to do it!)
		g. Well documented histories and procedures in place
		h. JHSC involvement to enable management to execute on their commitment
		i. Role description & expectations for a manager is up-to-date
		j. Managers must have underground ground control common core and joint health & safety certification
38	Boom or bust cycle in the mining	a. Bust: Retain technical resources to be able to address high risk hazards
	sector	b. Boom: Make sure that new employees are properly trained and appraised of the seismic risks
39	Lack of reporting due to resulting (extra) work	a. Streamline/simplify reporting processes
		b. Highlight/educate the importance of reporting
		c. Close the loop/communicating back (reporting, investigations, recommendations) with timelines
		d. Ensure proper training for reporting seismic events/hazards
		e. Put systems/processes in place to enable reporting
		f. Supervisors must be trained in how to respond to reporting
40	Poor management of re-conditioning requirements	a. Risk-based prioritization with timelines
		b. Involve the JHSC in the risk-based prioritization process
		c. Tie-in reconditioning to production schedule