

2025 Mining Health and Safety Conference

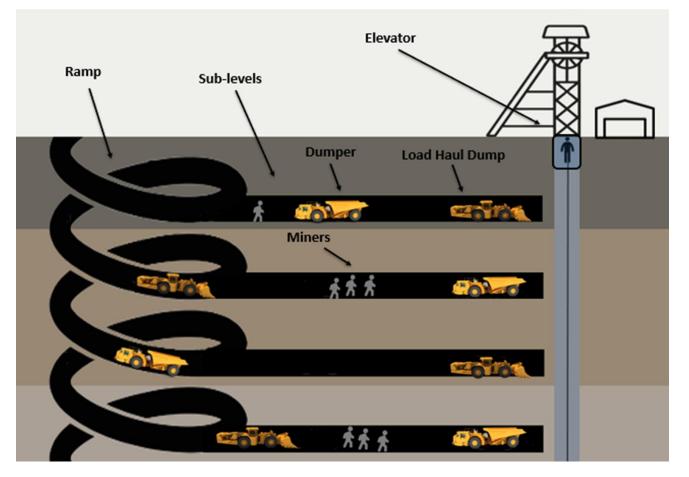
Technical Session Speaker

Advancements in Collision Avoidance Technologies for Underground Mining Safety

May 1, 2025 – Sudbury, Ontario

Chao Yu, PhD Founder & CEO at LoopX

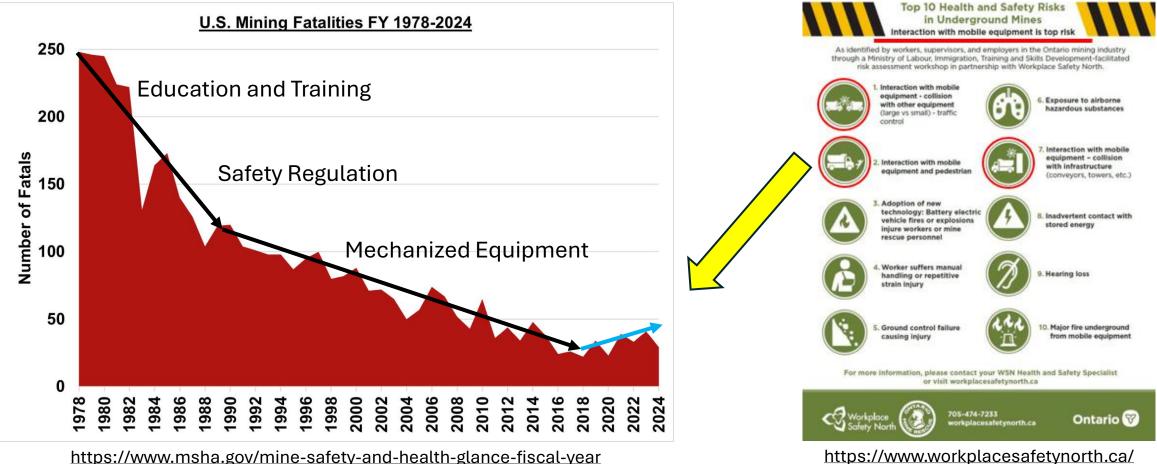
<u>chao.yu@loopx.ai</u>



Presentation Overview

- Increasing Safety Challenges Underground
- Safety Solutions EMESRT Framework
- Current Collision Avoidance Technologies
- Future Trends
- Conclusion

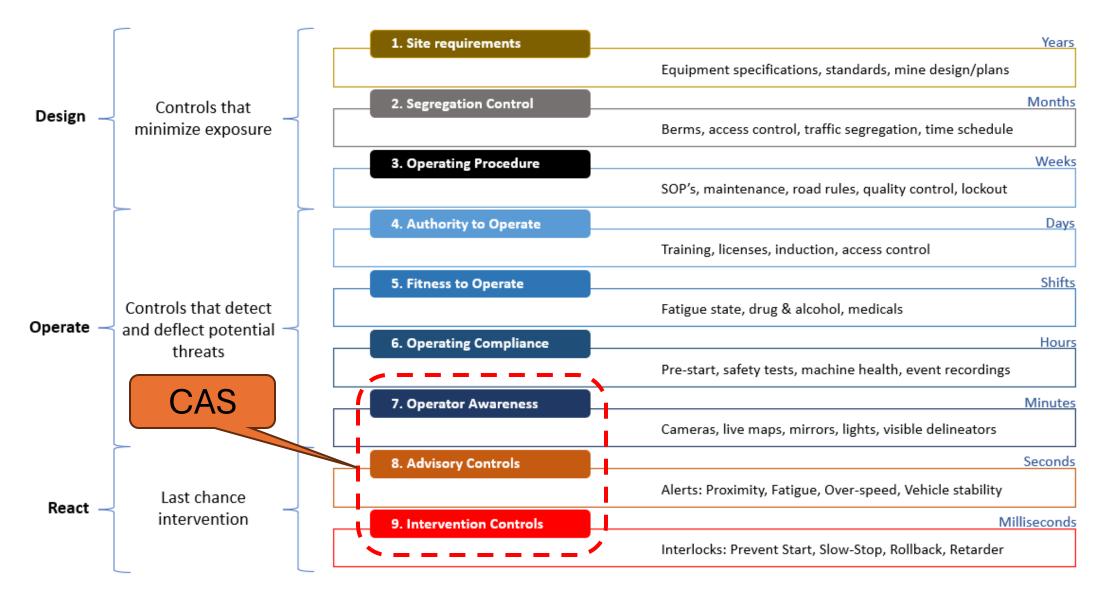
Increasing Safety Challenges Underground


 Increasing safety risks as more and more mines move deeper underground.

 Poor visibility, dust, noise, confined space create blind spots.

Source: Mohamed Iman, et al. (2023), The Future of Mine Safety. Sensors. https://doi.org/10.3390/s23094294

Increasing Safety Challenges Underground


- Fatality rates have slightly increased over the past five years, indicating that current solutions are no longer sufficient to achieve zero-fatality goals.
- Interaction with mobile equipment have emerged as a leading risk in underground mining.

04

Safety Solutions – EMESRT Framework

The EMESRT Nine Layer Model for Improving Vehicle Interaction Controls

Current CAS Solutions – RF-Based

• Radio Frequency (RF) - based technologies

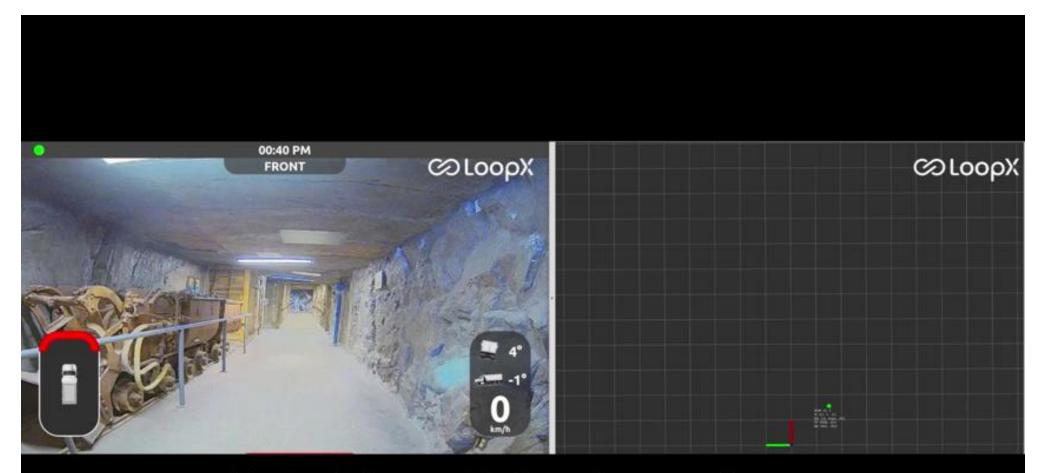
(Tag-to-Antenna Proximity Detection)

ΟΟΟΟΧ

Technology	Range	Cost	Pros & Cons
BLE (Bluetooth Low Energy)	1 m - 10 m	Very Low	 ✓ Low power consumption, less maintenance × Unstable signal strength (RSSI) × Not reliable for mobile equipment or L9 CAS
EM (Electromagnetic)	2 m - 5 m	Med	 ✓ Reliable for short-range zone control × Cannot detect through corners or obstructions × Not reliable for mobile equipment or L9 CAS
RFID	5 m - 30 m	Low	 ✓ Balanced in cost and detection range × No exact distance or direction × Not reliable for L9 CAS
UWB (Ultra-Wide Band)	10 m - 50 m	High	 High accuracy in distance and direction within line of sight Requires multiple anchors on vehicles or infrastructure More complex calibration
Wi-Fi	20 m - 100 m	Med	 ✓ Leverage existing Wi-Fi networks (local access points) × Poor distance and direction accuracy based on RSSI × Not reliable for L9 CAS

Current CAS Solutions – Sensor-Based

• Vehicle Sensor - based technologies


(Sensor Line-of-Sight Object Detection)

Technology	Range	Cost	Pros & Cons
RGB Camera	30 m	Low	 Easy to apply AI for object detection Prone to environmental factors like light, glare, and dust
Infrared Camera	10 m	Med	 Easy to apply AI for object detection Less prone to environmental factors like light and glare
Thermal Camera	30 m	High	 Resistant to environmental factors like light, glare, and dust Moderate compatibility with AI for object detection × No color or less texture
Radar	100 m	Med	 Resistant to environmental factors like light, glare, and dust Lower resolution; can't identify objects (e. g., HDV, LDV) Limited ability to detect stationary pedestrian
Lidar	50 m	Med	 ✓ High accuracy on distance measurement ✓ Resistant to light and glare × Prone to dust

CAS Testing – RF-Based

Testing Al-Powered Collision Awareness System with Integrated Camera, LiDAR, and UWB Sensors for Line-of-Sight and Non-Line-of-Sight Obstacles

https://youtu.be/Vy3AT-2CiZc

CAS Testing – Sensor-Based

ΟΓοορχ

Thermal Camera and LiDAR – based Al–powered Situational Awareness System

See through **Dust** and **Smoke**

https://youtu.be/iID4QVh2vCQ

Future Trends: Electrification Enables CAS L9

New Collision-Related Risks with Electric Vehicles

Silent Operation

EVs produce little to no noise, increasing risk of collisions

Workers may not hear the approach of a vehicle near blind corners or intersections

• Instant Torque & Acceleration

Electric drivetrains deliver torque immediately, making unintended acceleration more dangerous

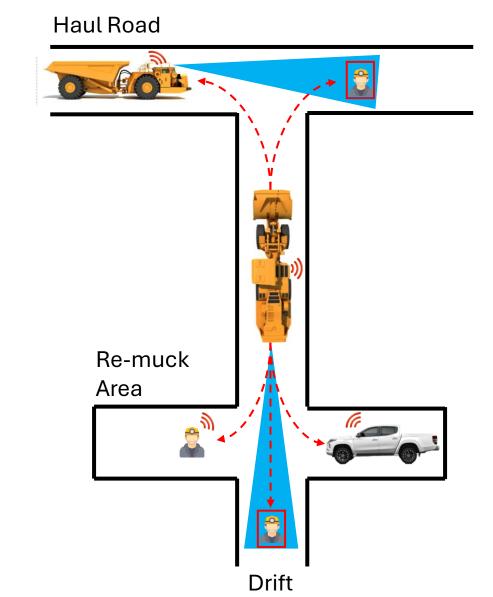
Electrification: A Catalyst for CAS L9 and Autonomy

- Electric mining vehicles are more computerized and software-driven
- Easier to interface with Level 9 CAS for automated intervention (e.g., slow-down, stop)
- Provides a strong foundation for semi / fully-autonomous control, supporting futureready mining operations

Future Trends: Hybrid CAS (Radio + Sensor)

Combines radio-based (UWB, Wi-Fi) with sensor-based (camera, LiDAR) technologies

• Radio-based systems: Reliable detection in non-line-of-sight


conditions but prone to false alarm and lack contextual awareness

• Sensor-based systems: Enable object recognition and AI-powered

perception but affected by dust and lighting, not effective for NLOS

- **Fusion approach:** Provides redundancy and compensates for individual tech limitations
- Future-proof: Supports EMESRT Level 9 CAS compliance and

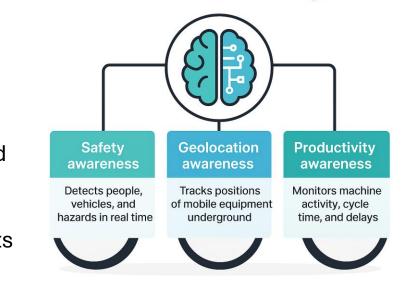
prepares for future autonomy integration

Future Trends: From CAS to SAS

ωΓοορχ

Collision Avoidance System

CAS (Collision Avoidance System)


- Focused on detection and reactive alerts (e.g., stop or warn)
- Limited to proximity-based triggers, without understanding context

SAS (Situational Awareness System)

- Adds perception, understanding, and prediction capabilities
- Integrates multiple types of awareness into one intelligent platform:
 Safety awareness Detects people, vehicles, and hazards in real time
 Geolocation awareness Tracks positions of mobile equipment underground
 Productivity awareness Monitors machine activity, cycle time, and delays
 And More Incorporate maintenance, environmental, and operational insights

Situational Awareness System

Conclusion

Existing CAS Technologies Review

- Radio Frequency based (e.g., RFID, EM, UWB, BLE)
- Vehicle Sensor based (e.g., Camera, LiDAR, Radar)

Future Technologies Forecast

- CAS L7 for Diesel-based Vehicles → CAS L9 for Electric Vehicles
- RF-only / Sensor-only CAS → Hybrid CAS
- Single-function collision avoidance → Comprehensive situational awareness

Let's Build the Future of Mining Together – Safely and Smartly

Chao Yu, PhD Founder & CEO at LoopX <u>chao.yu@loopx.ai</u>