

Diesel Particulate in Mines – Current Knowledge and Solutions

Mining Health and Safety Conference
Workplace Safety North
April 16th, 2015
Sudbury, Ontario

Michel Grenier - CanmetMINING, Natural Resources Canada

CanmetMINING Report: CMIN-2015-2651-OA

Presentation Overview

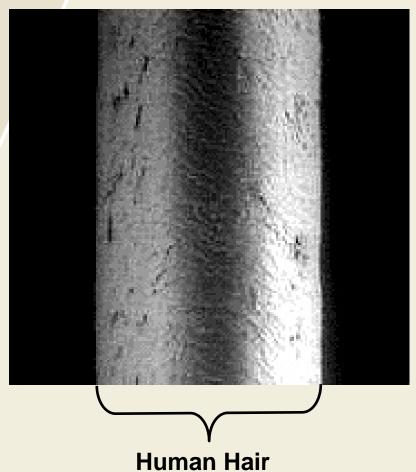
- Health concerns
- Diesel particulate matter (DPM) sampling and analysis
- Regulations and mine worker exposure
- Emissions control strategies
- Lessons learned

Diesel Exhaust Emissions – Definite Link to Cancer

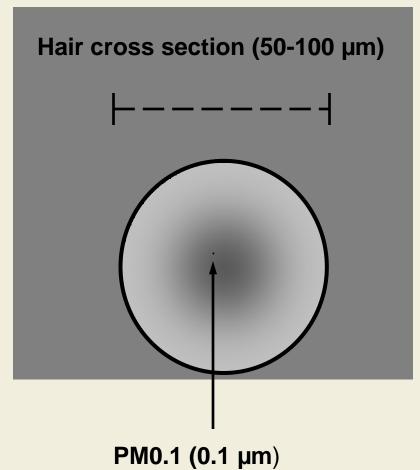
June 2012 World Health Organization moved classification for diesel exhaust from Group 2A (probable carcinogen) to Group 1 (carcinogen)

Source: Reuters, London, June 12th 2012

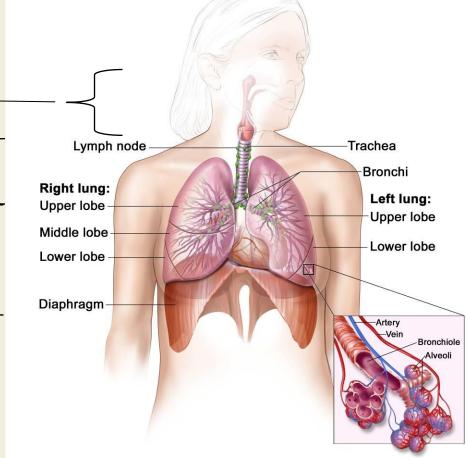
The Case of Claude Fortin


- Fortin was an U/G gold miner (25 years)
- An active non-smoker
- Diagnosed with lung cancer, passes away
 December 25th 2009
- 2103 Québec superior court upholds the regulators assertion that this represents an occupational disease
- This is a first...

Source: Le Devoir, January 25th 2013



(50-100 µm diameter)



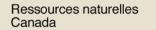
Particulate deposition

- Nose and throat remove particles greater than 10 μm
- Trachea and upper bronchi remove particles 2.5 μm to 10 μm
- Particles between 0.1 μm and 2.5 μm are deposited in bronchioles and alveoli
- Particles less than 0.1 μm reach all areas of lung and to some degree diffuse into body tissues

Diesel Particulate Sampling and Analysis

DPM Analytical Method

- NIOSH 5040 method:
 - Also known as the elemental carbon method
 - Adopted by Saskatchewan, Ontario, Québec, NL
 - Mentioned by name in the MSHA DPM ruling for the U.S.



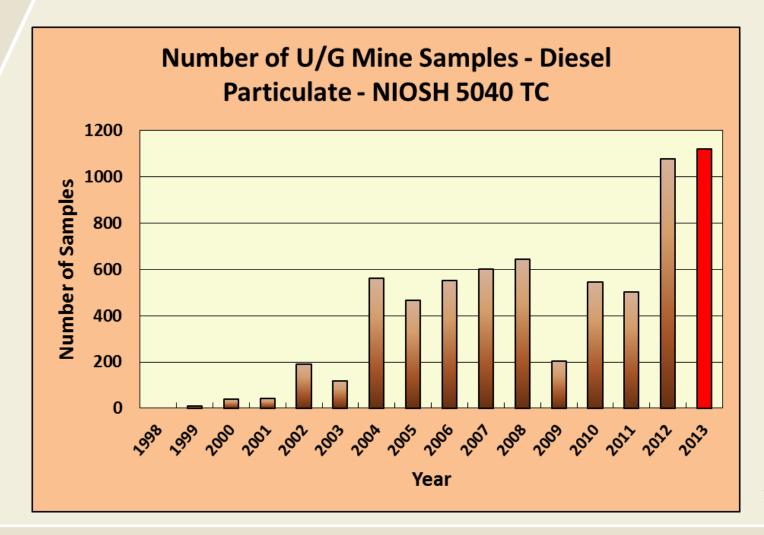
NIOSH 5040 Method

- Detection limit: 0.001 mg (elemental carbon) and 0.005 mg (organic carbon)
- Principle of analysis: twophase heating of sample with measurement of combustion generated gases

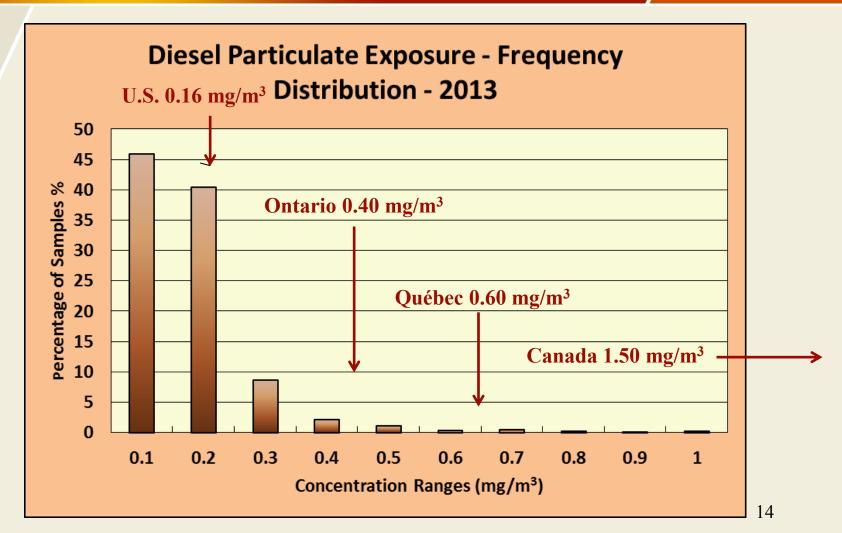
10

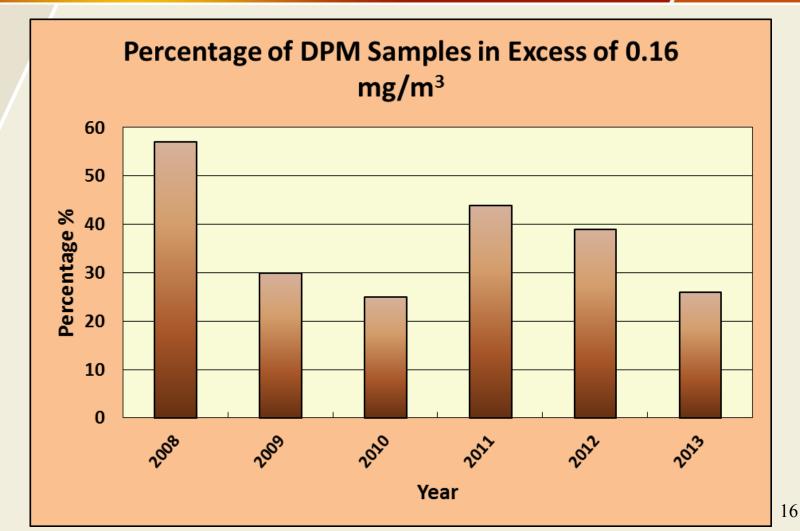
DPM Regulation and Miner Exposure Data

DPM Exposure Limits


- Canada 1.5 mg/m³ (early1990's)
- Québec 0.6 mg/m³ (Spring 2003*)
- Ontario 0.4 mg/m³ (January 2012)
- MSHA American mines 0.16 mg/m³

* Now 0.4 mg/m³





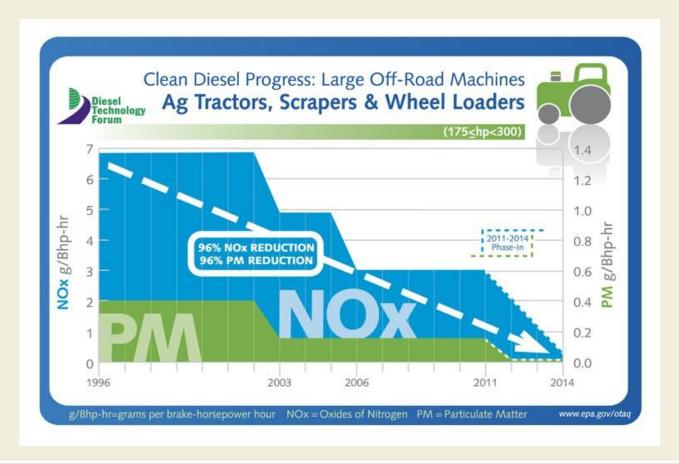
Percentage of Samples in Excess of Various Exposure Limits – 2013 Canadian Underground Mine Data (1064 samples)

Exposure limit (mg/m³)	% of samples in excess of limit
1.5 (Canada)	0
0.6 (Québec)	1.5
0.4 (Ontario)	3
0.16 (USA – MSHA)	26

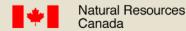
Emissions Control Strategies and Research

Solutions Toolbox – First and Foremost: Control at the Source

- Modern engines/certification
- Maintenance
- After-treatment technology
- Alternative energies



Clean Modern Engines



Certification for U/G Mine Engines

- Characterize engine emissions on laboratory dynamometer
- Determine ventilation volumes required to dilute to "safe" levels
- Used in some provincial regulation
- Used by all to select "cleaner" engines
- www.diesel.nrcan.gc.ca

Emissions Based Maintenance

- Underground mines require routine maintenance (250 hours)
- Maintain intake filters, leaks, exhaust, engine, cooling, etc. and measure **impact**
- Research showed 53% reductions in DPM exhaust concentration
- www.camiro.org/mining/dieselemission-evaluation-program

Exhaust Treatment

- Catalytic converters oxidation of CO to CO₂
- Particulate filters > 80% DPM reduction
- Advanced technology (selective catalytic reduction, SCR) > 70% NO_x reduction
- Combination of above, the only means of meeting new U.S. engine regulatory requirements (EPA Tier 4)

Alternative Energies

- Biodiesel
 - Can significantly reduce DPM
 - Can cause NO₂ to increase
- Diesel-Electric Hybrid Vehicles
 - 65% reduction in overall exhaust contamination
 - Fuel savings of 25% to 40%
- Hydrogen Fuel Cells
- Fully Electric Vehicles

RDH Mining – Haulmaster 800E

Pedno - Minautor

GE Mining – Battery Powered LHD

MINECAT – UT150 eMV

Papabravo – Badger EV-141 Crew

Other Mitigation Strategies:

- Sampling and monitoring
- Ventilation
- Training/technology transfer

Sampling & Monitoring

- Critical:
 - To meet regulation
 - To assess the impact of maintenance
 - To prove the impact and assess the cost benefit of engineering controls

Ventilation

- Maintain good ventilation systems and infrastructure
- Ventilation is indispensable but very costly – <u>control at the</u> <u>source</u>
- Underground as elsewhere it must be managed carefully



Training & Technology Transfer

- Make sure employees are aware of the risks and know how to eliminate or minimize exposure
- Share information
- http://mdec.ca

Lessons Learned

- Invest in the latest technology (modern engines, AC cabs, exhaust treatment)
- Regular emissions based vehicle maintenance
- Measure and monitor
- Ventilation (volume, distribution, maintenance)
- Employee training:
 - No unnecessary idling
 - Ensure equipment is working properly
 - Ensure ventilation is adequate
 - Report issues immediately

