Disruptive new sensor for monitoring rock bolt load and assessing rock movement

Yves Quenneville, Zhigang Sun, Kuo-Ting Wu, Silvio Kruger, Daniel Gagnon, Daniel Levesque, NRC Roger Lacroix and Renée Royer, CanMetMINING

Mining Health and Safety Conference Sudbury April 11, 2019

Contents

NRC and EME Intro

Techno-Economic Analysis

RBS[™] Concept

Mine Trials

Deployment and Applications

Conclusion

The NRC at Glance

Three key roles:

Business innovation Advancing knowledge Federal policy mandates

- 3,700 scientists, engineers, technicians and other specialists
- Over 20 research facilities
- Variety of industry sectors, from mining to aerospace
- \$1.1 B annual budget including

Developing, testing and transferring technology to the industry

NRC's in Mining

Energy, Mine and Environment Research Center

- Four facilities: Montreal, Boucherville, Ottawa and Vancouver
- Over 200 researchers
- Extensive infrastructures for the development and validation of technology, process and prototypes

Exploring Mining Application for Ultrasonic Sensors

- Rock bolting for ground support became industrial practice around 1950
- In 2011, the global usage of rock bolts worldwide was in excess of 500 million bolts per year
- Ground control issue has a major impact on mine safety and resource and productivity losses
- Failures of rock bolts occur as a result of overloading, corrosion, seismic burst and bad grouting
- In 2014, NRC started exploring the possibility to instrument fully grouted rock bolts with ultrasonic sensors

Techno-Economic Analysis of Instrumented Bolt

loaistics

TEA Study Conclusion

Current Instrumented Bolt Challenges:

- Limited sensing dynamic range and information
- Expensive sensor limiting their deployment
 - Require specially engineered bolt
 - Require special handling and installation
- Often fragile to mining environment

Technology Requirements:

- · Provide bolt load from installation up to rupture
- Must be inexpensive (below \$100/sensor)
- Suitable for use with standard "off-the-shelf" bolts
- Minimal changes to bolt installation procedure
- Meet mining robustness criteria

RBS[™] Ultrasonic Sensor Principle

The RBS[™] Concept

Rebar

Sensor head

recorder

Cap for real time

Rebar

Cone cap for manual recorder

Passive Sensor & RFID Tag

Connector cap to MHUB

Sensor head

Connector cap to RPR

RBS[™] Capabilities:

- Monitor load on full dynamic range from installation up to bolt rupture
- Detect plastic and elastic deformation and bolt rupture
- Record elongation and axial load on total bolt length and on segments of the bolt
- Integrated RFID tag for bolt identification and data integrity
- Low cost
- Minimal change to existing bolt installation procedure
- Minimal change to existing off-the-shelf rebar
- Robust to blasting and water proof
- Patent pending

RBS[™] Portable Recorder (RPR)

Reading RBS Sensor with RPR

- Recorder sensor data and RFID tag
- Telescopic perch with magnetic coupling to sensor
- WiFi and LTE data transmission
- Safe data storage on USB key
- Battery operated

Multichannel Hub (MHub) for Real Time Monitoring

MHub preparation for wall installation

MHub connected to RBS by wiring

MHub Capabilities

- MHub read data from up to 16 sensors
- Up to 50 m cable distance between sensor and MHub
- Two-way communication with WiFi, LTE or cable
- Remote control
- Dual power sources (Battery and AC)
- Water and vibration resistant
- Rock wall-mountable

RBS[™] Deployment Flexibility **MHub and RPR Are Interchangeable**

Rock Bolt Monitoring Manual Monitoring Hybrid System

Stable areas of mine are manually monitored with RPR active-to-passive

Real time and manual readout by mine personnel

MHub units are moved from stable areas to more active zones

Ground Control Application Integrated Ground Control

Fully automated mine-wide monitoring system

Could be integrated with microseismic and other monitoring system

Event and operator could trigger reading time and frequency

Mine Trial #1 Description of Testing on

MacLean bolter was used for the installation of 6-ft rebar of 22-mm diameter (#7)

Site 290W

- Manual Recording
- Active ground activities
- Manual inspection on a weekly basis using a RBR portable recorder

Site 299W

- Real Time Recording with MHub
- Moderate ground activities
- AC power supply, wired and wireless (LTE) network to above-ground server
- No direct exposure to blasts

Site 299W MHub and RBS Deployment

Site 299W

Site 290W RBS Deployment for RPR Reading

Seismic Response Within 12 Hours Period Following Production Blast on April 15 and May 13

April 15 blast

Site 299W Full Length Automatic Monitoring with MHub

Production blasts on April 15 and May 13

٠

.

Time delay of 1 to 3 hours for load change to transfer throughout the rock mass

Site 290W Full Length Manual Monitoring with RPR

RBS[™] Resistance to Blast

25 m from face: 1 blast

25 m from face: 4 blasts

Site 299W Sectional Load Change with MHub

- No load on Section 1
- Section 2 and 3 show various load distribution
- M13 and M16 follow a similar pattern

Site 290W Sectional Load Distribution in P3 with RPR

Load distribution varying with sections

- Section 1 (head) no load
- Section 2 (middle) most loaded after blast ٠
- Section 3 (foot) loaded ٠

Site 290W Measurement of Plastic Deformation on P3 (section 3) with RPR

P3 has yielded at Section 3

Site 290W Evolution of P6 Load Change with RPR, March to August 2018

Site 290W Measurement of Plastic Deformation in P6

W 🛞

Mine Trial #2 Description of Testing

Test specifications

 500-AMN-500: two rock types near active draw point (#7 8ft rebar 22mm and MHub)

Compare bolt with holes vs bolt with no hole:

- 680-AMN-355: drift intersection (8ft rebar 22mm and RPR)
- 860-GRO-1S: near development face (8ft rebar 22mm and RPR)

500-AMN-500 with MHub Sectional Load (Ton)

EU-S-N-DSS-0500 (500-AMN-500)

M9

M9 (M5

Site 500-AMN-500 Sectional Load Results with MHub

Site 500-AMN-500 Average Load Over Full Length with MHub

From Rock Bolt Monitoring to Better Geo-Mechanical Modeling

RBS[™] technology transforms rock bolts into sensors

The integration of RBS[™] data with microseismic, LiDAR and other technologies will provide better geo-mechanical understanding of the mine

In near future, RBS[™] Sensor network will provide to ground control specialist a new tool to better assess extraction impact and rock movement in support of better design of operation

Conclusion

New tool for ground control engineer for safety, mine planning and processes design

Conceived for network deployment

Deliver extensive information on rock bolt status

Validated in operational mines

Now exploring data integration with other technologies

RBS Consortium

A special thanks to **CanmetMINING** and the members of the **RBS Consortium** project for their support in field testing the RBSTM technology.

- Agnico Eagle
- Alamos Gold
- Barrick Gold
- Eldorado Gold
- Goldcorp
- IAMGOLD
- Kirkland Lake Gold

THANK YOU

Yves Quenneville Client Relationship Leader Yves.Quenneville@cnrc-nrc.gc.ca

National Research Conseil national de Council Canada recherches Canada